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We study differentiation of functions f based on noisy data f (ti)+=i . We recover
f (k) either at a single point or on the interval [0, 1] in L2-norm. Under stochastic
assumptions on f and =i , we determine the order of the errors of the best linear
methods which use n noisy function values. Polynomial interpolation for the
pointwise problem and smoothing splines for the problem in L2-norm are shown
to be almost optimal. The analysis involves worst case estimates in reproducing
kernel Hilbert spaces and a Landau inequality. � 1996 Academic Press, Inc.

1. INTRODUCTION

Suppose we wish to compute a derivative of a function f, if only inac-
curate data f (ti)+=i are available. How do we select the sampling points
ti , and how do we approximate the derivative? Which error do we expect?

We study two variants of the differentiation problem for real-valued
functions f on [0, 1]. We wish either to recover the derivative f (k)(t) at a
single point t # [0, 1], or to recover f (k) on the whole interval [0, 1]. In the
latter case we consider the distance from f (k) in L2-norm. In order to treat
also the recovery of the function itself we assume k�0.

The function f may be observed at a finite number of points ti # [0, 1];
however, the values f (ti) are corrupted by some noise =i . The data f (ti)+=i

are used to recover the kth derivative of f approximately. We consider
linear methods (estimators)

Sn( f, =)= :
n

i=1

( f (ti)+=i) } gi , (1)

where gi # R for recovering f (k)(t), and gi # L2([0, 1]) for recovering f (k).
Assumptions on the function f and on the noise = are needed to derive

error bounds for methods Sn . In this paper =1 , ..., =n are uncorrelated ran-
dom variables with zero mean and common variance _2>0, i.e., E(=i)=0
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and E(=i =j)=$ij_2. The variance _2 is assumed to be known. As with the
noise, we also consider the average case with respect to the functions. More
precisely, f is a measurable random function (stochastic process) with
zero mean, E( f (t))=0, and covariance kernel R(s, t)=E( f (s) f (t)) where
s, t # [0, 1], see [7, 16]. The regularity of f in mean square sense is
specified by the regularity of the covariance kernel R. In order to let f (k)

be well defined and continuous in mean square sense for k�r, we
assume that the partial derivative R(r, r) is at least continuous on [0, 1]2.
Finally, we assume that function values and noise are uncorrelated, i.e.,
E( f (t)=i)=0 for all t # [0, 1] and 1�i�n. Observe that we use E to
denote the expectation with respect to the random function and the noise
(if applicable). We allow repeated observations at the same point with
uncorrelated noise by taking ti= } } } =ti+l for some i and l. The stochastic
approach to numerical differentiation follows Anderssen and Bloomfield
[1].

The error of a linear method Sn is defined in mean square sense by

e(Sn , k, t)=(E( f (k)(t)&Sn( f, =))2)1�2

for recovering f (k)(t) or by

e(Sn , k)=(E & f (k)&Sn( f, =)&2
2)1�2=\E |

1

0
( f (k)(t)&Sn( f, =)(t))2 dt+

1�2

for recovering f (k) on [0, 1].
The following questions arise. What are the minimal errors in the class

of all methods which use n function values? Which selection of sampling
points ti and elements gi leads to these minimal errors? The answers
depend on the random function f through the covariance kernel R. In this
paper we study kernels R such that the corresponding reproducing Hilbert
spaces coincide or differ only slightly from Sobolev spaces Wr+1

2 ([0, 1]).
This holds true, for instance, if R satisfies the Sacks�Ylvisaker regularity
conditions, see [21�23]. In particular, f may be the r-fold integrated
Brownian motion.

It turns out that the minimal errors are of order

min(_�- n, 1)1&k�(r+1�2) for recovering f (k)(t) (2)

if n�r+1 and

min(_�- n, 1)1&(k+1�2)�(r+1) for recovering f (k) (3)

if _�n&(r+1�2). In the latter problem, a noise with _�n&(r+1�2) does not
effect the order; we get n&(r&k+1�2) as in the case of exact data. For
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recovering f (k)(t), the optimal order is obtained by polynomial interpola-
tion of sample means at points which are concentrated around t; without
repetitions we get the same order. For recovering f (k) on [0, 1], equidistant
points and natural smoothing splines yield the optimal order.

Plaskota [17] has already obtained (3) in the case r=k=0, which
corresponds to recovering a Brownian motion f from noisy data f (ti)+=i .
While Plaskota uses conditional probability measures, our analysis
involves worst case estimates in reproducing kernel Hilbert spaces. The
proof of the upper bound in (3) relies on a Landau inequality for the
norms &h(k)&� , &h&2 , and &h(r+1)&2 on the interval [0, 1], which is due to
Gabushin [6] and Kwong and Zettl [9]. Relations between Landau
problems and numerical differentiation are used by several authors, see
[2, 4, 9, 12] for results and further references.

Recovery from noisy data by means of smoothing splines is studied in
the monographs of Eubank [5], Wahba [29], and Plaskota [19]. In
particular for differentiation, upper bounds for the resulting errors are
obtained under different assumptions concerning the functions f and the
noise =. A partial list of references includes Ragozin [20], Cox [3], Utreras
[26, 27], and Vershinin and Pavlov [28], who study the worst case with
respect to f. The noise is assumed to be deterministic in [28] and
stochastic in the other papers. Univariate functions f are considered in
[20, 28], as in the present paper, while [3, 26, 27] study the multivariate
case.

2. OPTIMAL METHODS FOR GIVEN SAMPLING POINTS

This section contains known results concerning the optimal choice of the
scalars or functions gi , given fixed points ti , see (1). The optimal gi yield
minimal errors in the class of all linear estimators which use the sampling
points ti . We discuss the role of reproducing kernel Hilbert spaces and the
optimality of smoothing spline methods.

For recovering f (k), Fubini's Theorem gives

e(Sn , k)2=|
1

0
E \f (k)(t)& :

n

i=1

( f (ti)+=i) } gi (t)+
2

dt. (4)

Therefore minimizing this error with respect to the functions gi is equiv-
alent to minimizing the integrand with respect to the scalars gi (t) for
almost every t. Hence an optimal method to recover f (k) on [0, 1] coin-
cides almost everywhere with optimal methods to recover f (k)(t).

Let H(R) denote the Hilbert space with reproducing kernel R, see
[16, 29]. The scalar product and the norm on H(R) are denoted by
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( } , } )R and & }&R , respectively. By h we denote an arbitrary function
h # H(R). Since R(r, r) is continuous on [0, 1]2 by assumption, we have
H(R)/Cr([0, 1]). Observe that h(k)(t)=(h, ') R with '=R(0, k)( } , t).
Furthermore, E( f (k)(s) f (l)(t))=R(k, l)(s, t). Here s, t # [0, 1] and k, l�r.

Consider the Hilbert space H(R)_Rn, equipped with the scalar product

( (h1 , p1), (h2 , p2))=(h1 , h2) R+_2 :
n

i=1

p1, i } p2, i .

Let ei denote the ith unit vector in Rn, and let BX denote the unit ball in
a normed space X.

For recovering f (k)(t), the error of Sn satisfies

e(Sn , k, t)2=E \f (k)(t)& :
n

i=1

f (ti) } gi+
2

+_2 :
n

i=1

g2
i

="'& :
n

i=1

gi } R( } , ti)"
2

R
+_2 :

n

i=1

g2
i

="(', 0)& :
n

i=1

gi } (R( } , ti), ei)"
2

.

We conclude that

e(Sn , k, t)= sup
(h, p) # B(H(R)_Rn) }h (k)(t)& :

n

i=1

(h(ti)+_2pi) } gi }. (5)

Hence we are dealing with a linear problem, the recovery of h(k)(t), on
the unit ball in a Hilbert space. Formally, exact data are available. In this
situation, the optimality of an abstract spline algorithm is known, see [25,
Section 4.5.7]. For fixed ti # [0, 1] and corrupted function values yi=
f (ti)+=i let (h*, p*) denote the unique solution of the minimization
problem

&(h, p)& � min on [(h, p) # H(R)_Rn : h(ti)+_2pi=yi].

Equivalently, h* is the unique solution of the minimization problem

&h& 2
R+

1
_2 :

n

i=1

(h(ti)&yi)
2 � min. (6)

The solutions of problems of this type are called smoothing splines. The
function h* depends linearly on y1 , ..., yn and Sn*( f, =)=(h*)(k)(t) has
minimal error among all linear methods which use sampling points ti .
Summarizing we obtain the following.
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Proposition 1 (see [8, 18]). The smoothing spline algorithms

Sn*( f, =)=(h*)(k) and Sn*( f, =)=(h*)(k) (t)

are optimal for recovering f (k) and f (k)(t), respectively.

Optimality properties of smoothing spline algorithms for linear problems
with noisy data are known in several settings. See [5, 19, 25, 29] for results
and further references.

Example 1. Let K1(s, t)=min(s, t) be the Brownian motion kernel,
let K2(s, t)=exp(&|s&t| ) be the Ornstein�Uhlenbeck kernel, and let
K3(s, t)=1&|s&t|. We have H(K1)=[h # W 1

2([0, 1]) : h(0)=0] and
H(K2)=H(K3)=W 1

2([0, 1]). The norms in these reproducing kernel
Hilbert spaces are given by

&h&K1
=&h$&2 ,

&h&2
K2

=(&h$&2
2+&h&2

2+h(0)2+h(1)2)�2,

&h&2
K3

=(&h$&2
2+(h(0)+h(1))2)�2,

see [14, 29].
Let fi be a random function with covariance kernel Ki . The partial

derivative K (1, 1)
i (s, t) does not exist for s=t, and therefore fi is not differen-

tiable in mean square sense. To obtain a random function f with regularity
r>0 we integrate fi r-fold with deterministic or stochastic boundary condi-
tions, i.e.,

f (s)= :
r

k=0

%ksk�k !+(r&1)!&1 |
1

0
fi (u) } (s&u) r&1

+ du,

with suitable constants or random variables %k . We denote the covariance
kernel of f by R.

Consider the Brownian motion f1 . If %0= } } } =%r=0 then

R(s, t)=r !&2 |
1

0
(s&u) r

+ } (t&u)r
+ du,

and f is called r-fold integrated Brownian motion. Furthermore,

H(R)=[h # W r+1
2 ([0, 1]) : h(0)= } } } =h(r)(0)=0]
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and &h&R=&h(r+1)&2 . In this case recovery and integration of functions
with noisy data are studied in [17]. If (%0 , ..., %r) is independent of f1 and
normally distributed with zero mean and covariance matrix _2

0 Id then
H(R)=W r+1

2 ([0, 1]) and

&h&2
R=

1
_2

0

:
r

k=0

h(k)(0)2+&h(r+1)&2
2 . (7)

See [29, Chapter 1].
Observe that the kernels K2 and K3 correspond to (wide sense)

stationary random functions; i.e., Ki is a function of s&t only, see [7].
Stationarity is an interesting assumption as there are no distinguished
points in the interval [0, 1]. In [10, 14] it is shown how to preserve
stationarity by r-fold integration using random boundary conditions.

Remark 1. The classical smoothing splines are defined by the mini-
mization problem

* } &h(r+1)&2
2+

1
n

:
n

i=1

(h(ti)&yi)
2 � min (8)

on the space W r+1
2 ([0, 1]). This corresponds to (6) with *=_2�n and with

&h&R replaced by the seminorm &h(r+1)&2 . If n�r+1 then (8) has a
natural polynomial spline of degree 2r+1 as its unique solution. The solu-
tion of (6) tends to the solution of (8), if & }&R is given by (7) and _0 � �.

In our approach the smoothing parameters _&2 in (6) and * in (8) are
determined by the variance of the noise. Other choices of *, in particular
in the case of an unknown variance _2, are studied in the literature. See
[5, 29].

3. DESIGN PROBLEM AND ERROR BOUNDS

We turn to the question of optimal selection of the sampling points ti

and elements gi simultaneously, see (1). Only the number n of evaluations
is fixed. Due to Proposition 1 we basically have to vary over the points ti ;
the corresponding minimization problem is often called the design problem.
Moreover, we are interested in the respective minimal errors

inf
Sn

e(Sn , k, t) and inf
Sn

e(Sn , k)

in the class of all estimators which use n sampling points.
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Let t, t1 , ..., tn # [0, 1] be arbitrary, and consider the corresponding
optimal method Sn* for recovering f (k)(t). Then

e(S n*, k, t)=sup[ |h (k)(t)| : (h, p) # B(H(R)_Rn), h(ti)=&_2pi]

=sup { |h (k)(t)| : &h&2
R+

1
_2 :

n

i=1

h(ti)
2�1= , (9)

which follows from (5) and [13, Theorem 5]. Using (4) and Proposition
1 we obtain

e(Sn*, k)2=|
1

0
sup { |h(k)(t)| 2 : &h&2

R+
1
_2 :

n

i=1

h(ti)
2�1= dt (10)

for the optimal method to recover f (k).
Clearly the minimal errors depend on the regularity of the functions f,

and hence on the regularity of the covariance kernel R. The latter deter-
mines the regularity of the functions in H(R). In the following we assume
that H(R)=W r+1

2 ([0, 1]) as sets, related assumptions are discussed in
Remark 4. Due to the closed graph theorem, the norm & }&R is equivalent
to any norm on W r+1

2 ([0, 1]) which turns this space into a reproducing
kernel Hilbert space.

Furthermore, the minimal errors depend on k (and t), as well as on the
number n of sampling points and on the variance _2 of the noise. If _�- n
is large then the following turns out. For both variants of the differentia-
tion problem the error of any method is bounded from below by a positive
constant. Conversely, the error of the zero algorithm Sn=0 is finite and
does not depend on n or _. We put

q=min(_�- n, 1).

Hence small values of q form the interesting case.
We can determine the minimal errors and solve the design problem only

up to multiplicative constants. For the corresponding almost optimal
designs we analyze not only the optimal spline algorithms, see Proposition
1, but also methods which are easier to implement and which depend on
R only through the condition H(R)=W r+1

2 ([0, 1]), see Remarks 2 and 3.
In particular, these methods do not use the norm & }&R , which may be hard
to determine. Henceforth, positive constants # and #i with possibly different
values may only depend on R.

The following theorem gives the order of the minimal errors for
recovering f (k)(t) at the point t.
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Theorem 1. Suppose that H(R)=W r+1
2 ([0, 1]) where r # N0 . Then

there are constants #1 , #2>0 such that

#1 } q1&k�(r+1�2)�inf
Sn

e(Sn , k, t)�#2 } q1&k�(r+1�2)

for all _>0 and n�r+1, and all 0�k�r and t # [0, 1].

Proof. First we prove the lower bound. Using |h(ti)|�&h&� and (9) we
obtain

inf
Sn

e(Sn , k, t)�sup[ |h(k)(t)| : &h&2
R+q&2 &h&2

��1].

Note that the norms &h&R and max(&h&� , &h(r+1)&2) are equivalent on
H(R). Hence q�1 implies

inf
Sn

e(Sn , k, t)�# } sup[ |h(k)(t)| : &h(r+1)&2�1, &h&��q].

Take � # Cr+1(R) with

|
R

�(r+1)(s)2 ds�1, sup
s # R

|�(s)|�1, �(k)(0)>0,

and put

h(s)=q } �((s&t)�q1�(r+1�2)).

Then

&h(r+1)&2�1, &h&��q, h(k)(t)=q(2(r&k)+1)�(2r+1) } �(k)(0),

and the lower bound follows.
We obtain the upper bound by polynomial interpolation if _2�n.

Assume that n=l(r+1) with l # N. Take x0 , ..., xr # [0, 1] such that
xi&xi&1=v and t=*x0+(1&*)xr for some * # [0, 1] and some positive
v. Consider sample means

yi=
1
l

:
l

j=1

( f (xi)+=il+j)=f (xi)+
1
l

:
l

j=1

=il+j (11)

of l-fold noisy evaluation of f at the points xi . Let p denote the polynomial
of degree at most r with p(xi)=yi for i=0, ..., r and define Sn( f, =)=p(k)(t).

We have

p(s)= :
r

i=0

yi } pi ((s&x0)�v),
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where pi are the polynomials of degree r with pi ( j)=$ij for i, j=0, ..., r.
Hence

p(k)(t)=
1
vk :

r

i=0

yi } p (k)
i ((1&*) r)

and

e(Sn , k, t)2=E( f (k)(t)&Sn( f, 0))2+E(Sn(0, =))2

= sup
h # BH(R)

|h(k)(t)&Sn(h, 0)| 2+
_2

lv2k } #

with

#= :
r

i=0

( p (k)
i ((1&*) r))2.

Clearly h(k)(t)=Sn(h, 0) for all polynomials h of degree at most r. There-
fore

sup
h # BH(R)

|h(k)(t)&Sn(h, 0)|�# } vr&k+1�2

with a suitable constant #. We conclude that

e(Sn , k, t)2�# } \v2(r&k)+1+
_2

lv2k+ .

Take

v=min((_�- l )1�(r+1�2), 1�r) (12)

to obtain

e(Sn , k, t)2�# } (_�- l )(2(r&k)+1)�(r+1�2).

Furthermore, the error of the method Sn=0 is given by sup[ |h(k)(t)| :
&h&R�1]=R(k, k)(t, t)1�2, see (5). K

Remark 2. According to the proof of Theorem 1, the following method
is almost optimal to recover f (k)(t) if n�max(r+1, _2). Put l=wn�(r+1)x

and define v by (12). Approximate f (k)(t) by Sn( f, =)=p(k)(t), where p is
the polynomial of degree at most r which interpolates the sample means
(11) at equidistant points x0 , ..., xr with xi&xi&1=v and x0�t�xr .

The following theorem gives the order of the minimal errors for
recovering f (k) on the interval [0, 1].
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Theorem 2. Suppose that H(R)=W r+1
2 ([0, 1]) where r # N0 . Then

there are constants #1 , #2>0 with the following properties for all _>0 and
n # N, and all 0�k�r.

If _�n&(r+1�2) then

#1 } n&(r&k+1�2)�inf
Sn

e(Sn , k)�#2 } n&(r&k+1�2). (13)

If _�n&(r+1�2) then

#1 } q1&(k+1�2)�(r+1)�inf
Sn

e(Sn , k)�#2 } q1&(k+1�2)�(r+1). (14)

Proof. First we establish the lower bounds. Let A denote the operator
of k-fold integration, i.e.,

Ah(s)=(k&1)!&1 |
1

0
h(u) } (s&u)k&1

+ du.

Due to (10) we have

e(Sn*, k)2�|
1

0
sup[ |h(k)(t)| 2 : &h&R�1, h(ti)=0] dt

�# |
1

0
sup[ |h(t)| 2 : h # X] dt,

where

X=[h # W r&k+1
2 ([0, 1]) : h(0)= } } } =h(r&k)(0)=0,

&h(r&k+1)&2�1, Ah(ti)=0].

By this estimate, e(Sn*, k) is, modulo a constant, bounded from below by
an average error for recovering an (r&k)-fold integrated Brownian
motion, see Example 1. The data are the exact values of the k-fold
integrals, evaluated at ti . The error of the latter problem is bounded from
below by # } n&(r&k+1�2), see [15], and hence we get the lower bound in
(13).

To obtain the lower bound in (14) we proceed similar to the proof of the
lower bound in Theorem 1. Let � # Cr+1(R) with

|
R

�(r+1)(s)2 ds�1, sup
s # R

|�(s)|�1, �(k)(0)>0,
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and

�(s)=0 if |s|�1�2. (15)

For any t # [0, 1] we define

ht(s)=q(2r+1)�(2r+2) } �((s&t)�q1�(r+1)).

Clearly

&ht&��q(2r+1)�(2r+2), h (k)
t (t)=q(2(r&k)+1)�(2r+2) } �(k)(0),

and

ht(s)=0 if |s&t|�1�2 } q1�(r+1).

In particular, ht vanishes with all derivatives at s=0 or s=1, and therefore

&ht&R�# } &h (r+1)
t &2�#.

Consider an arbitrary set T=[t1 , ..., tn]/[0, 1]. Without loss of
generality we may assume that the points ti are pairwise different. Put v=
min(q1�(r+1), 1�4) and define Ij=]( j&1) 2v, j2v[ for j=1, ..., w1�(2v)x.
Observe that

*[ j : *(Ij & T)�4nv]�w1�(4v)x,

where * is used to denote the number of elements in a set. Taking into
account only points t # ]( j&1) 2v+v�2, j2v&v�2[, we conclude that the
Lebesgue measure of the set

U=[t # [0, 1]: *(]t&v�2, t+v�2[ & T)�4nv]

is at least v } w1�(4v)x�1�8.
For any t # U the respective function ht satisfies

1
_2 :

n

i=1

ht(ti)
2�

4nv } &ht &
2
�

_2 �4.

Let Sn* denote the optimal estimator which uses the points from T. From
(10) we get the lower bound in (14) by

e(Sn*, k)2�|
U

sup { |h(k)(t)| 2: &h&2
R+

1
_2 :

n

i=1

h(ti)
2�1= dt

�# } q(2(r&k)+1)�(r+1).
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If _>- n then the zero algorithm Sn=0 yields the upper bound in (14).
We show that otherwise equidistant sampling points ti=(i&1)�(n&1) and
natural smoothing splines yield the matching upper bounds.

From (4) and (5) we obtain

e(Sn , k)2=|
1

0
sup

(h, p) # B(H(R)_Rn)

|h(k)(t)&Sn(h, _2p)(t)| 2 dt

�# |
1

0
sup[ |h(k)(t)&Sn(h, _2p)(t)| 2 : (h, p) # Y] dt

for any linear method Sn , where

Y={(h, p) # W r+1
2 ([0, 1])_Rn : &h(r+1)&2

2+_2 :
n

i=1

p2
i �1= .

Assume that n�max(r+1, _2) and let h- be the solution of (8) with yi=
f (ti)+=i and *=_2�n. Note that h- also solves the minimization problem

&h(r+1)&2
2+_2 :

n

i=1

p2
i � min on

[(h, p) # Wr+1
2 ([0, 1])_Rn: h(ti)+_2pi=yi].

Consider the method Sn( f, =)=(h-)(k). A general theorem on optimality of
abstract spline algorithms, see [25, Section 4.5.7], implies the following.
For fixed t # [0, 1], the method (h, p) [ (Sn(h, _2p))(k) (t) is worst case
optimal on Y to recover h(k)(t) from the data h(ti)+_2pi . Furthermore,

sup[ |h(k)(t)&Sn(h, _2p)(t)| : (h, p) # Y]

=sup[ |h(k)(t)|: (h, p) # Y, h(ti)=&_2pi]

�sup[&h(k)&� : (h, p) # Y, h(ti)=&_2pi].

We conclude that

e(Sn , k)�# } sup {&h(k)&� : &h(r+1)&2�1, :
n

i=1

h(ti)
2�_2= .

According to [20, Theorem 3.2],

&h&2
2�# } \n&1 :

n

i=1

h(ti)
2+n&(2r+2) } &h(r+1)&2

2+
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for any h # W r+1
2 ([0, 1]). Therefore

e(Sn , k)�# } sup[&h(k)&� : &h(r+1)&2�1, &h&2�q+n&(r+1)].

Take � # Cr+1(R) with

sup
s # R

|�(s)|�1, �(0)=1, �( j)(0)=0 if 1� j�r,

and (15). For h # H(R) with |h(k)(t*)|=&h(k)&� we define

h0(s)=�(s&t*) } h(s).

If &h&R�1 then &h (r+1)
0 &2�#, &h0&2�&h&2 , and &h (k)

0 &��|h (k)
0 (t*)|=

&h(k)&� . Moreover, h0 vanishes with all derivatives at s=0 or 1. Hence

e(Sn , k)�# } sup[&h(k)&� : h(s)= } } } =h(r)(s)=0 for s=0 or 1,

&h(r+1)&2�1, &h&2�q+n&(r+1)].

Due to [6] and [9, p. 21], a Landau inequality

&h(k)&��# } &h& (2(r&k)+1)�(2r+2)
2 } &h(r+1)& (2k+1)�(2r+2)

2

holds for all h # W r+1
2 ([0, 1]) such that h, ..., h(r) have zeros in [0, 1]. This

implies

e(Sn , k)�# } (q+n&(r+1))(2(r&k)+1)�(2r+2),

and the upper bounds in (13) and (14) follow. K

Remark 3. In the previous proof we have shown in particular that the
following method is almost optimal to recover f (k) if n�max(r+1, _2).
Define Sn( f, =)=(h-)(k) where h- is the natural smoothing spline of degree
2r+1 which solves (8) with sampling points ti=(i&1)�(n&1), data yi=
f (ti)+=i , and smoothing parameter *=_2�n.

Remark 4. The condition H(R)=W r+1
2 ([0, 1]) in Theorems 1 and 2 is

not easy to check, in general. However, the upper bounds from these
theorems hold for the methods described in Remarks 2 and 3 whenever

H(R)/W r+1
2 ([0, 1]). (16)

Sacks and Ylvisaker [22, 23] have introduced regularity conditions for
covariance kernels R to study the design problem for weighted integration,
based on exact data. The conditions say that
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(a) L=R(r, r) is continuous on [0, 1]2 with partial derivatives of
order two off the diagonal in [0, 1]2,

(b) along the diagonal L(1, 0) has a discontinuity of constant height,

(c) L(2, 0)(s, } ) # H(L) with uniformly bounded norms &L(2, 0)(s, } )&L .

Several authors have studied weighted integration or recovery of functions
in the exact data case under Sacks�Ylvisaker conditions. See [21] for a list
of references. It is easy to check that the kernels L=Ki in Example 1 satisfy
the conditions.

In [21] it is shown that the Sacks�Ylvisaker conditions imply the
inclusion (16), and hence the upper bounds from Theorems 1 and 2 hold.
Moreover, if

R(r, k)( } , 0)=0 (17)

for k=0, ..., r&1, additionally, then

[h # W r+1
2 ([0, 1]): h(k)(0)=h(k)(1)=0 for k=0, ..., r]

/H(R)/W r+1
2 ([0, 1]). (18)

The proofs of Theorem 1 and 2 are easily modified to see that the lower
bounds also hold if H(R) satisfies (18). However, in Theorem 1 the con-
stants #1 and #2 may depend on t and may vanish for t=0 and 1. We
add that the boundary condition (17) states that f (k)(0) and f (r)(t) are
uncorrelated for any 0�t�1.

Remark 5. In particular for k=0, i.e., for recovering the function f, and
for fixed _>0 we have

#1 } n&1�2+1�4(r+1)�inf
Sn

e(Sn , 0)�#2 } n&1�2+1�4(r+1).

For r=0 this result is due to Plaskota [17]. Furthermore, Plaskota shows
that noisy observation of r th derivatives yields minimal errors of order
n&1�2 for the r-fold integrated Brownian motion if r>0. Hence Theorem 2
answers an open problem from [17]: Observation of noisy r th derivatives
is more powerful to recover f than observation of noisy function values.

Remark 6. We briefly discuss the case when exact data f (ti) are
available. Suppose that H(R) satisfies (18). For recovering f (k)(t), polyno-
mial interpolation at n=k+1 points yields arbitrarily small errors. For
recovering f (k), the minimal errors satisfy

#1 } n&(r&k+1�2)�inf
Sn

e(Sn , k)�#2 } n&(r&k+1�2). (19)
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In the case k=0 this result is due to Speckman [24]. Due to results of
Papageorgiou and Wasilkowski [15] the minimal errors for recovering an
(r&k)-fold integrated Brownian motion from exact values of linear func-
tionals are of order n&(r&k+1�2). Hereby the lower bound bound in (19)
follows. The upper bound in (19) holds for the error of methods which
are based on natural splines which interpolate at equidistant points, cf.
Remark 3.

Even in the case of exact data, asymptotic constants are only known for
r=k=0. Lee [11] has shown that

lim
n � �

inf
Sn

e(Sn , 0) } n1�2=6&1�2

for recovering a Brownian motion from data f (ti). Plaskota [17] has
obtained explicit estimates for infSn e(Sn , 0) } n1�4 in the latter problem in
the presence of noise.

Remark 7. Stronger conclusions hold if the noise = is normally dis-
tributed and the random function f is Gaussian.

The order of minimal errors remains unchanged if we consider a much
broader class of methods Sn , see [19] for general results. These methods
may choose the sampling points adaptively (sequentially) and determine the
total number of observations by means of an adaptive stopping rule. Any
approximation to a derivative is permitted which depends (measurably) on
the data f (ti)+=i and uses n observations on the average.

Furthermore, Theorem 2 extends to the case of recovering f (k) in
Lp-norm with 1�p<�; we omit the details. It would be interesting to
know the order of minimal errors in the case p=�.
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